lunes, 31 de mayo de 2010
aldehidos
Aldehídos
El sistema de nomenclatura corriente consiste en emplear el nombre del alcano correspondiente terminado en -al.
Cuando el grupo CHO es sustituyente se utiliza el prefijo formil-.
También se utiliza el prefijo formil- cuando hay tres o más funciones aldehídos sobre el mismo compuesto .En esos casos se puede utilizar otro sistema de nomenclatura que consiste en dar el nombre de carbaldehído a los grupos CHO (los carbonos de esos CHO no se numeran, se considera que no forman parte de la cadena).Este último sistema es el idóneo para compuestos con grupos CHO unidos directamente a ciclos.
Aldehídos
Los aldehídos constituyen una clase de sustancias orgánicas que presentan el grupo funcional carbonilo dentro de la estructura de la molécula, acoplado a por lo menos un átomo de hidrógeno. Pueden ser alifáticos o aromáticos en dependencia de si el grupo funcional se acopla a un radical alquilo (R) o arilo (Ar) respectivamente, por el otro enlace disponible.
Aldehido alifático Aldehido aromático
El primer miembro de la clase de los aldehídos alifáticos es el formaldehído (CH2O), y es el único que posee dos átomos de carbono acoplados al grupo carbonilo. Esta diferencia estructural hace que tenga ciertas características que lo distinguen del resto de la clase. El segundo miembro se llama acetaldehído (CH3CHO) de estructura.
En los aldehídos aromáticos el primer miembro es el benzaldehído, con un anillo bencénico acoplado al grupo carbonilo.
Fuentes naturales y usos de los aldehídos.
Los aldehídos están ampliamente presentes en la naturaleza. El importante carbohidrato glucosa, es un polihidroxialdehído. La vanillina, saborizante principal de la vainilla es otro ejemplo de aldehído natural.
Probablemente desde el punto de vista industrial el mas importante de los aldehídos sea el formaldehído, un gas de olor picante y medianamente tóxico, que se usa en grandes cantidades para la producción de plásticos termoestables como la bakelita.
La solución acuosa de formaldehído se conoce como formol o formalina y se usa ampliamete como desinfectante, en la industria textil y como preservador de tejidos a la descomposición.
Propiedades físicas de los aldehídos.
Los primeros aldehídos de la clase presentan un olor picante y penetrante, fácilmente distinguible por los seres humanos.
El punto de ebullición de los aldehídos es en general, mas alto que el de los hidrocarburos de peso molecular comparable; mientras que sucede lo contrario para el caso de los alcoholes, así, el acetaldehído con un peso molecular 44 tiene un punto de ebullición de 21°C, mientras que el etanol de peso 46 hierve a 78°C.
La solubilidad en agua de los aldehídos depende de la longitud de la cadena, hasta 5 átomos de carbono tienen una solubilidad significativa como sucede en los alcoholes, ácidos carboxílicos y éteres. A partir de 5 átomos la insolubilidad típica de la cadena de hidrocarburos que forma parte de la estructura comienza a ser dominante y la solubilidad cae bruscamente.
Propiedades químicas de los aldehídos.
El grupo carbonilo de los aldehídos en fuertemente reactivo y participa en una amplia variedad de importantes transformaciones, que hacen de la química de los aldehídos un tema extenso y complejo. Aqui solo no limitaremos a tratar someramente algunas de sus reacciones características.
Reducción a alcoholes.
Por contacto con hidrógeno en presencia de ciertos catalizadores el doble enlace carbono=oxígeno del grupo carbonilo se rompe y un átomo de hidrógeno se acopla a uno de los enlaces para formar el grupo hidroxilo típico de los alcoholes.
Reducción a hidrocarburos
Los aldehídos pueden ser reducidos a hidrocarburos al interactuar con ciertos reactivos y en presencia de catalizadores. En la reducción Wolff-Kishner el acetaldehído se trata con hidrazina como agente reductor y etóxido de sodio como catalizador. El resultado de la reacción produce una mezcla de etano, agua y nitrógeno.
Polimerización
Los primeros aldehídos de la clase tienen un marcada tendencia a polimerizar. El formaldehído por ejemplo, polimeriza de forma espontánea a temperatura ligeramente superior a la de congelación (-92°C).
Del mismo modo, cuando se evapora una solución al 37% de formaldehído en agua que contenga de 10 a 15% de metanol se produce un polímero sólido que se conoce como parafolmaldehído. Si se calienta el parafolmaldehído se vuleve a producir el formaldehído en forma gaseosa.
También se forman polímeros cuando las soluciones de formaldehído o acetaldehído se acidifican ligeramente con ácido sulfúrico.
Reacciones de adición
Los aldehídos también sufren reacciones de adición, en las cuales se rompe la estructura molecular del aldehído y el agente reaccionante se agrega a la molécula para la formación de un nuevo compuesto.
El sistema de nomenclatura corriente consiste en emplear el nombre del alcano correspondiente terminado en -al.
Cuando el grupo CHO es sustituyente se utiliza el prefijo formil-.
También se utiliza el prefijo formil- cuando hay tres o más funciones aldehídos sobre el mismo compuesto .En esos casos se puede utilizar otro sistema de nomenclatura que consiste en dar el nombre de carbaldehído a los grupos CHO (los carbonos de esos CHO no se numeran, se considera que no forman parte de la cadena).Este último sistema es el idóneo para compuestos con grupos CHO unidos directamente a ciclos.
Aldehídos
Los aldehídos constituyen una clase de sustancias orgánicas que presentan el grupo funcional carbonilo dentro de la estructura de la molécula, acoplado a por lo menos un átomo de hidrógeno. Pueden ser alifáticos o aromáticos en dependencia de si el grupo funcional se acopla a un radical alquilo (R) o arilo (Ar) respectivamente, por el otro enlace disponible.
Aldehido alifático Aldehido aromático
El primer miembro de la clase de los aldehídos alifáticos es el formaldehído (CH2O), y es el único que posee dos átomos de carbono acoplados al grupo carbonilo. Esta diferencia estructural hace que tenga ciertas características que lo distinguen del resto de la clase. El segundo miembro se llama acetaldehído (CH3CHO) de estructura.
En los aldehídos aromáticos el primer miembro es el benzaldehído, con un anillo bencénico acoplado al grupo carbonilo.
Fuentes naturales y usos de los aldehídos.
Los aldehídos están ampliamente presentes en la naturaleza. El importante carbohidrato glucosa, es un polihidroxialdehído. La vanillina, saborizante principal de la vainilla es otro ejemplo de aldehído natural.
Probablemente desde el punto de vista industrial el mas importante de los aldehídos sea el formaldehído, un gas de olor picante y medianamente tóxico, que se usa en grandes cantidades para la producción de plásticos termoestables como la bakelita.
La solución acuosa de formaldehído se conoce como formol o formalina y se usa ampliamete como desinfectante, en la industria textil y como preservador de tejidos a la descomposición.
Propiedades físicas de los aldehídos.
Los primeros aldehídos de la clase presentan un olor picante y penetrante, fácilmente distinguible por los seres humanos.
El punto de ebullición de los aldehídos es en general, mas alto que el de los hidrocarburos de peso molecular comparable; mientras que sucede lo contrario para el caso de los alcoholes, así, el acetaldehído con un peso molecular 44 tiene un punto de ebullición de 21°C, mientras que el etanol de peso 46 hierve a 78°C.
La solubilidad en agua de los aldehídos depende de la longitud de la cadena, hasta 5 átomos de carbono tienen una solubilidad significativa como sucede en los alcoholes, ácidos carboxílicos y éteres. A partir de 5 átomos la insolubilidad típica de la cadena de hidrocarburos que forma parte de la estructura comienza a ser dominante y la solubilidad cae bruscamente.
Propiedades químicas de los aldehídos.
El grupo carbonilo de los aldehídos en fuertemente reactivo y participa en una amplia variedad de importantes transformaciones, que hacen de la química de los aldehídos un tema extenso y complejo. Aqui solo no limitaremos a tratar someramente algunas de sus reacciones características.
Reducción a alcoholes.
Por contacto con hidrógeno en presencia de ciertos catalizadores el doble enlace carbono=oxígeno del grupo carbonilo se rompe y un átomo de hidrógeno se acopla a uno de los enlaces para formar el grupo hidroxilo típico de los alcoholes.
Reducción a hidrocarburos
Los aldehídos pueden ser reducidos a hidrocarburos al interactuar con ciertos reactivos y en presencia de catalizadores. En la reducción Wolff-Kishner el acetaldehído se trata con hidrazina como agente reductor y etóxido de sodio como catalizador. El resultado de la reacción produce una mezcla de etano, agua y nitrógeno.
Polimerización
Los primeros aldehídos de la clase tienen un marcada tendencia a polimerizar. El formaldehído por ejemplo, polimeriza de forma espontánea a temperatura ligeramente superior a la de congelación (-92°C).
Del mismo modo, cuando se evapora una solución al 37% de formaldehído en agua que contenga de 10 a 15% de metanol se produce un polímero sólido que se conoce como parafolmaldehído. Si se calienta el parafolmaldehído se vuleve a producir el formaldehído en forma gaseosa.
También se forman polímeros cuando las soluciones de formaldehído o acetaldehído se acidifican ligeramente con ácido sulfúrico.
Reacciones de adición
Los aldehídos también sufren reacciones de adición, en las cuales se rompe la estructura molecular del aldehído y el agente reaccionante se agrega a la molécula para la formación de un nuevo compuesto.
cetonas
Una cetona es un compuesto orgánico caracterizado por poseer un grupo funcional carbonilo. Cuando el grupo funcional carbonilo es el de mayor relevancia en dicho compuesto orgánico, las cetonas se nombran agregando el sufijo -ona al hidrocarburo del cual provienen (hexano, hexanona; heptano, heptanona; etc). También se puede nombrar posponiendo cetona a los radicales a los cuales está unido (por ejemplo: metilfenil cetona). Cuando el grupo carbonilo no es el grupo prioritario, se utiliza el prefijo oxo- (ejemplo: 2-oxopropanal).
El grupo funcional carbonilo consiste en un átomo de carbono unido con un doble enlace covalente a un átomo de oxígeno, y además unido a otros dos átomos de carbono.
El tener dos átomos de carbono unidos al grupo carbonilo, es lo que lo diferencia de los ácidos carboxílicos, aldehídos, ésteres. El doble enlace con el oxígeno, es lo que lo diferencia de los alcoholes y éteres. Las cetonas suelen ser menos reactivas que los aldehídos dado que los grupos alquílicos actúan como dadores de electrones por efecto inductivo.
Cetonas alifáticas [editar]
Resultan de la oxidación moderada de los alcoholes secundarios. Si los radicales alquilo R son iguales la cetona se denomina simétrica, de lo contrario será asimétrica o mixta. carbono
• Isomería
o Las cetonas son isómeros de los aldehídos de igual número de carbono.
o Las cetonas de más de cuatro carbonos presentan isomería de posición. (En Casos específicos)
o Las cetonas presentan tautomeria ceto-enólica.
En química, una cetona es un grupo funcional que se rige por un compuesto carboxilico que se mueve por la fusion de dos o más atomos
Cetonas aromáticas [editar]
Se destacan las quinonas, derivadas del benceno.
Para nombrar los cetonas tenemos dos alternativas:
• El nombre del hidrocarburo del que procede terminado en -ona.Como sustituyente debe emplearse el prefijo oxo-.
• Citar los dos radicales que están unidos al grupo carbonilo por orden alfabético y a continuación la palabra cetona.
Propiedades físicas [editar]
Los compuestos carbonílicos que presentan puntos de ebullición más bajos y altos que los alcoholes de su mismo peso molecular. No hay grandes diferencias entre los puntos de ebullición de aldehídos y cetonas de igual peso molecular. Los compuestos carbonílicos de cadena corta son solubles en agua y a medida que aumenta la longitud de la cadena disminuye la solubilidad.
Reacciones de cetonas [editar]
Las reacciones de los aldehídos y cetonas son esencialmente de tres tipos; adición nucleofílica, oxidación y reducción.
Adición nucleofílica : Debido a la resonancia del grupo carbonilo la reacción más importante de aldehídos y cetonas es la reacción de adición nucleofílica cuyo mecanismo es el siguiente:
Siguen este esquema la reacción con hidruros ( NaBH4, LiAlH4 ) donde Nu- = H- y la reacción con organometálicos (RMgLi, RLi) donde Nu- = R-.
Adición nucleofílica de alcoholes
Adición de amina primaria
Adición de Hidroxilamina
Adición de hidracinas
Adición de Ácido Cianhídrico
Oxidación 1
Reducción
Hidruro
Hidrogenación
Reducción de Clemmensen
Reacción de Wolff-Kishner
Las(cet-nase) cetonas que poseen hidrógenos en posición α al grupo carbonilo dan también reacciones de condensación mediante un mecanismo en el que una base fuerte sustrae un hidrógeno α de la cetona generando un enolato, el cual (en su forma carbaniónica) actúa como nucleófilo sobre el grupo carbonilo de otra molécula de la misma cetona o de otro compuesto carbonílico (otra cetona, aldehído, éster, etcétera). Luego de la adición nucleofílica del carbanión al grupo carbonilo se genera un aldol mediante la acidificación del medio, el cual puede deshidratarse por calentamiento de la mezcla de reacción, obteniéndose un compuesto carbonílico α,ß-insaturado. Cabe aclarar que no siempre es necesaria la acidificación del medio de reacción y que en muchas reacciones de condensación se obtiene el producto deshidratado de manera espontánea (esto depende de la estabilidad relativa de los posibles productos de la condensación).
Ejemplos
propanona, ou dimetilcetona
(acetona)
butanona, ou etil metil cetona
2-pentanona,ou metil propil cetona
3-buten-2-ona
ciclohexanona
4-hexin-2-ona,ou 2-butinil metil cetona
FUNCIÓN GRUPO FUNCIONAL EJEMPLO
Alcanos No tiene
Alquenos
Alquinos
Hidrocarburos cíclicos No tiene
Hidrocarburos aromáticos
Halogenuros de alquilo
Alcoholes
Fenoles
Éteres
Aldehídos
El grupo funcional carbonilo consiste en un átomo de carbono unido con un doble enlace covalente a un átomo de oxígeno, y además unido a otros dos átomos de carbono.
El tener dos átomos de carbono unidos al grupo carbonilo, es lo que lo diferencia de los ácidos carboxílicos, aldehídos, ésteres. El doble enlace con el oxígeno, es lo que lo diferencia de los alcoholes y éteres. Las cetonas suelen ser menos reactivas que los aldehídos dado que los grupos alquílicos actúan como dadores de electrones por efecto inductivo.
Cetonas alifáticas [editar]
Resultan de la oxidación moderada de los alcoholes secundarios. Si los radicales alquilo R son iguales la cetona se denomina simétrica, de lo contrario será asimétrica o mixta. carbono
• Isomería
o Las cetonas son isómeros de los aldehídos de igual número de carbono.
o Las cetonas de más de cuatro carbonos presentan isomería de posición. (En Casos específicos)
o Las cetonas presentan tautomeria ceto-enólica.
En química, una cetona es un grupo funcional que se rige por un compuesto carboxilico que se mueve por la fusion de dos o más atomos
Cetonas aromáticas [editar]
Se destacan las quinonas, derivadas del benceno.
Para nombrar los cetonas tenemos dos alternativas:
• El nombre del hidrocarburo del que procede terminado en -ona.Como sustituyente debe emplearse el prefijo oxo-.
• Citar los dos radicales que están unidos al grupo carbonilo por orden alfabético y a continuación la palabra cetona.
Propiedades físicas [editar]
Los compuestos carbonílicos que presentan puntos de ebullición más bajos y altos que los alcoholes de su mismo peso molecular. No hay grandes diferencias entre los puntos de ebullición de aldehídos y cetonas de igual peso molecular. Los compuestos carbonílicos de cadena corta son solubles en agua y a medida que aumenta la longitud de la cadena disminuye la solubilidad.
Reacciones de cetonas [editar]
Las reacciones de los aldehídos y cetonas son esencialmente de tres tipos; adición nucleofílica, oxidación y reducción.
Adición nucleofílica : Debido a la resonancia del grupo carbonilo la reacción más importante de aldehídos y cetonas es la reacción de adición nucleofílica cuyo mecanismo es el siguiente:
Siguen este esquema la reacción con hidruros ( NaBH4, LiAlH4 ) donde Nu- = H- y la reacción con organometálicos (RMgLi, RLi) donde Nu- = R-.
Adición nucleofílica de alcoholes
Adición de amina primaria
Adición de Hidroxilamina
Adición de hidracinas
Adición de Ácido Cianhídrico
Oxidación 1
Reducción
Hidruro
Hidrogenación
Reducción de Clemmensen
Reacción de Wolff-Kishner
Las(cet-nase) cetonas que poseen hidrógenos en posición α al grupo carbonilo dan también reacciones de condensación mediante un mecanismo en el que una base fuerte sustrae un hidrógeno α de la cetona generando un enolato, el cual (en su forma carbaniónica) actúa como nucleófilo sobre el grupo carbonilo de otra molécula de la misma cetona o de otro compuesto carbonílico (otra cetona, aldehído, éster, etcétera). Luego de la adición nucleofílica del carbanión al grupo carbonilo se genera un aldol mediante la acidificación del medio, el cual puede deshidratarse por calentamiento de la mezcla de reacción, obteniéndose un compuesto carbonílico α,ß-insaturado. Cabe aclarar que no siempre es necesaria la acidificación del medio de reacción y que en muchas reacciones de condensación se obtiene el producto deshidratado de manera espontánea (esto depende de la estabilidad relativa de los posibles productos de la condensación).
Ejemplos
propanona, ou dimetilcetona
(acetona)
butanona, ou etil metil cetona
2-pentanona,ou metil propil cetona
3-buten-2-ona
ciclohexanona
4-hexin-2-ona,ou 2-butinil metil cetona
FUNCIÓN GRUPO FUNCIONAL EJEMPLO
Alcanos No tiene
Alquenos
Alquinos
Hidrocarburos cíclicos No tiene
Hidrocarburos aromáticos
Halogenuros de alquilo
Alcoholes
Fenoles
Éteres
Aldehídos
Suscribirse a:
Entradas (Atom)